
This month, Tim Maher calls for the Perl community to adopt
a serious certification program, both to help individual Perl pro-
grammers make it through the hiring process, and to increase
Perl’s standing in the corporate IT market. What do you think?
Your comments are welcome at editors@tpj.com.

— Editors

During my six years as a Perl educator and contract pro-
grammer, I’ve often pondered the problems facing the Perl
community. One of these is the alarming state of un- or

under-employment of many Perl specialists (including some of
our brightest stars), while our colleagues who program in more
prosaic languages such as Java and C++ enjoy more secure job
positions.

To gain a better understanding of how Perl and its program-
mers are perceived in the industry, I've talked with managers of
Information Technology (IT) departments and professionals work-
ing in Human Resources (HR) and recruiting agencies. This has
led me to some conclusions about how we could improve our sit-
uation that I'm eager to share with you.

But first, you should know some of the pertinent aspects of my
background. During my 12 years in academia, I obtained a wealth
of experience in both taking and constructing examinations, and I
studied techniques for computer assisted learning and testing. Lat-
er, while working with Sun Microsystems Inc., I had to take and
pass the certification exams of the “Solaris System Administrator”
series, and I provided feedback to help improve their quality.

These experiences have made me comfortable with testing tech-
nologies, but also highly cognizant of the need for testing to be
done accurately and responsibly.

Before I turn to the subject of Perl certification, I'll review cer-
tain aspects of Perl's current status in the enterprise.

Perl’s Image Is Cool, but Strange
It goes without saying that Perl is a marvelously expressive, ex-
tensible, and productive language that’s fun to use. This has been

noticed by many IT departments that value it as a general-purpose
scripting language, a language for CGI or DB development, or
one for cross-platform system administration.

Unfortunately, from the vantage point of old-school computer
science types, Perl can also look like a “toy language” when com-
pared to ones such as C++ and Java. That’s partly due to Perl’s
lack of support for many features that let IT managers sleep bet-
ter at night, such as strict type checking, compile-time function
binding, standardized exception handling, and a conventional OO
model.

In consequence, when it comes to critical software develop-
ment projects — you know, the kinds that retain their participants
even during recessions — Perl doesn’t make the grade. It’s sum-
marily rejected for such projects, because their participants tend
to view characteristics such as successful compilations in the face
of missing subroutine arguments as tragic flaws, rather than charm-
ing indulgences of poetic license.

But Perl’s historical laxity in these areas is by design, because
Whipuptitude and Manipulexity (Larryisms, of course) are large-
ly incompatible with, and have always had higher priority than,
those aforementioned sleep-inducing properties.

Perl Should Cater More to Corporate Needs
Besides the intrinsic strengths and weaknesses unique to Perl’s de-
sign tradeoffs, I believe there’s another reason why Perl is often
left sitting on the bench in the big games. Put bluntly, we’ve done
a lousy job of pitching our language to the business community.

For instance, there are many IT managers who are willing to
consider Open Source solutions, but are unsure how to view Perl
relative to the languages they know. And that’s perfectly under-
standable, because Perl’s eclecticism is associated with lots of
mixed messages, that would confuse any sensible person.

They’re told that Perl is a scripting language, but not really, be-
cause it’s compiled, but then again it’s some strange kind of com-
pilation that doesn’t produce object code, so it’s not really com-
piled, and it’s a procedural language, or sometimes an OO one,
but there aren’t really classes or exceptions, and there isn’t just
one OO model—you can roll your own, and it’s a feature that
missing functions won’t trigger warnings until they’re called, rather
than at compile time, and so forth.

The Perl Journal ■ October 2003 8 www.tpj.com

Is it Time for
Perl Certification?

Tim Maher

Tim is the founder and leader of SPUG (Seattle.pm) and the CEO of
Consultix, which offers Perl, UNIX, and Linux training. He can be
reached at tim@teachmeperl.com.

Not to mention the fact that Perl programmers are notori-
ous for cultivating idiosyncratic dialects of the language, that
are almost as distinctive as handwriting styles, and can pre-
vent one programmer from being able to read or maintain an-
other’s programs.

On top of all this, Perl advocates are inclined toward pro-
nouncements like “It’s too hard to parse to allow beautifica-
tion,” “It’s so flexible it can be programmed in poetry mode
with autovivification and bleached code or in Latin with Klin-
gon numbers,” and “It’s too multifaceted, expressive, advanced,
and, well, artsy and esoteric” to allow meaningful certification
tests for its programmers.

(Regarding beautification, see my 1998 TPC presentation on
the first “Perl Beautifier” at http://www.teachmeperl.com/perl_
beautifier.html.)

Furthermore, as the last nail in the coffin, the only “Perl certi-
fication” identifiable with the Perl community itself is a purpose-
ly bogus one.

Given the technical shortcomings just summarized, and PR like
this, is it any wonder that other languages, including the most
stodgy, cumbersome, and uninspired ones, are eating Perl’s lunch
in thousands of corporate cafeterias?

But there’s a development in the offing that could help improve
our situation.

Perl 6 Will Have More Enterprise Appeal
The wondrously reworked Perl 6, when it arrives, will go a long
way toward stemming many of these concerns about the fickle-
ness and eccentricity of our language, because it promises to give
programmers the option for more rigor right where the IT man-
agers want it. That means they can have the best of both pro-
gramming models—the traditional “expressive and intuitive and
loose” Perl, and a new, “more rigid and bulletproof” variation. It
will still be Perlish, but suddenly no longer a weak sister to C++
or Java.

Perl 6 is justifiably expected to stimulate a widespread recon-
sideration of the important roles that Perl can play in IT depart-
ments, and an increase in new hiring for JAPHs (JAPH means
“Just Another Perl Hacker”).

But how will hiring managers be able to confirm that the ap-
plicants for the new Perl jobs really know Perl 6? An answer that
would readily occur to those managers would be “through certi-
fication.”

But while we’re waiting for Perl 6, is there anything we could
do to improve Perl's image?

How Can We Help Perl Get the Respect it Deserves?
What would be the best way to improve the (somewhat motley)
position of Perl in the corporate world, so it would be more fre-
quently chosen for important applications, and Perl programmers
could get placed in more secure positions?

How about improving Perl’s documentation? That couldn’t
help; Perl’s documentation is already the best in the industry.

How about creating a worldwide network of support
groups for Perl programmers? We’ve already got one. It’s
called “Perl Mongers.”

How about making Perl more robust? Perl 6, which will be
more robust in all the right areas, is on the way.

How about launching a PR campaign extolling Perl’s
virtues? It’s probably too late for Perl 5, whose strengths and
weaknesses are already well known, for any attempt at “spin”
to be very successful. We’ll have a lot more to boast about when
Perl 6 comes out, so it might be best to delay this kind of effort
until then.

How about creating a certification program for Perl pro-
grammers? Hmm…that might be just what we need!

Establishing Perl skills as certifiable, and the Perl community
as willing to comply with accepted hiring protocols, could cast
Perl in a totally new light. First of all, hiring managers would be
inclined to see Perl as more stable and conventional, because cer-
tification (unlike “poetry mode” and “bleached code”) is consid-
ered a hallmark of serious languages. Second, they’d realize that
screening Perl programmers would suddenly be no more difficult
than screening Java programmers, Oracle Database Administra-
tors, or Linux System Administrators.

And of course, these benefits at the hiring end of the equation
would make it easier for managers to consider basing additional
projects on Perl, because of the greater ease in staffing them.

Finally, when Perl 6 arrives, managers would realize that the
new Perl would be suitable for the most critical enterprise appli-
cations, offering additional incentives for increasing Perl devel-
opment and JAPH hiring.

In a nutshell, these are the conclusions I’ve come to, and my
recommendations to the Perl community. In the remainder of this
article, I’ll provide some details that will help you see how I’ve
arrived at these conclusions, and help you make up your own mind
about this important issue.

There’s a Demand for Certification
As a quick search with Google will confirm, there are several ven-
dors currently offering certificates of Perl competency based on
online tests, and one of these has reportedly been designated as a
requirement for job applicants at certain companies.

The very fact that some have found it necessary to qualify ap-
plicants for Perl jobs on the basis of certificates of dubious value
(more on this in a moment) indicates a real need for a legitimate
Perl certification service that’s going unfilled.

Through my involvement with the Perl community, I’ve made
contact with many hiring managers who are also Perl program-
mers and advocates, and they tell a similar story, which goes like
this: They’d like to use Perl more widely in their (old-school, tra-
ditional) businesses, but they feel like they’re swimming against
the corporate tide. Eventually, they get tired of championing an
underdog, and they ultimately settle on another language that’s
easier to defend to colleagues and more amenable to HR screen-
ing practices. (This reminds me of the old “Nobody ever got fired
for buying IBM” ads that appealed to the CYA demon whisper-
ing in every manager’s ear.)

One of the major complaints of these managers is the lack of
any help from the Perl community in validating the skills of a job
applicant. That puts the burden of vetting essential applicant skills
directly on the shoulders of the manager (or his staff). And they
know that’s not a burden shared by managers hiring Java pro-
grammers, because the Java language is associated with a series
of professionally designed and administered certification tests
which are widely respected as evidence of competence.

But what about C++, Perl’s other major competitor in the en-
terprise? Like Perl, it lacks a widely accepted certification

The Perl Journal ■ October 2003 9 www.tpj.com

If we don’t rise to the challenge
to do it properly, some

opportunistic corporation might
beat us to the punch

program, but that certainly hasn’t prevented it from reaching
widespread acceptance.

The crucial difference between Java and C++ is that C++ was
there first, and had an existing base of corporate interviewing teams
that felt comfortable hiring C++ programmers. When Java emerged
as an alternative, its proponents had to work harder to make it ap-
pealing to the business community. That’s why they went to the
effort of developing a certification program, to make it easy for
HR departments to perform initial screenings of Java job appli-
cants, and to make the new language easier for managers to adopt.

We in the Perl community are in many ways in the same “un-
derdog position” as Java initially was, so we’d be wise to take a
page from Java’s book, and make it as easy as possible for com-
panies to hire Perl programmers.

Clearing the First Hurdle
Larry Wall’s whimsical thoughts on the “Three Virtues of Perl Pro-
grammers” are well known in the Perl community. An even more
essential bit of knowledge for JAPHs is the first hurdle that must
generally be overcome by a job applicant, especially when deal-
ing with a big company. That hurdle, called “screening,” is erect-
ed by the HR department, and those who surmount it get their ré-
sumés onto the hiring manager’s desk, while the others have theirs
consigned forever to the dreaded circular file. (The same process
is also commonly used by recruiters working for placement agen-
cies, but for simplicity, I’ll refer to this as an HR activity.)

The important thing to understand about HR departments is that
their technical knowledge is limited to buzzwords and certifications.
Accordingly, when 200 résumés show up on Monday for the sin-
gle Perl job advertised on Sunday (as can happen in the USA), HR
starts the screening process in a frenzy, to reduce that stack to the
much shorter one desired by the hiring manager.

During the winnowing process, in the absence of explicit in-
structions to the contrary, résumés that are missing that prized
screening credential—a relevant certification—generally get trashed.
In fact, the screeners might in their zeal even trash the résumé that
says “Larry Wall” at the top, if they’re lucky enough to get it.

In one case reported to me, this ruthless screening process caused
100 percent of the applicants for a Perl-only position to be ruled
ineligible for an interview! In other situations, such as positions
that invite both Perl and Java applicants, this process has put JAPH
contenders at a huge disadvantage to their (more commonly cer-
tified) Java competitors.

OSCON Attendees Voted For Perl Certification
At the 2003 O’Reilly Open Source Convention (OSCON), I
moderated a Panel Discussion on Perl certification (http://con-
ferences.oreillynet.com/cs/os2003/view/e_sess/3747), featuring
a diverse and distinguished panel, including Perl 6 designer
Damian Conway. The discussion centered around the pros and
cons of having a certification program for Perl programmers.

Approximately 200 people attended the session, and during the
open discussion period, many posed questions to the panelists,
and shared their own experiences and views. As any seasoned ob-
server of the Perl community would guess, passionate arguments
were heard on both sides of the issue.

But something happened at the end of the session that surprised
all the panelists, and every Perl community “leader” with whom
I’ve since discussed it (but interestingly, not many Perl “follow-
ers”). Specifically, Damian called for a show-of-hands vote of at-
tendees for and against the development of a certification program
for Perl programmers, and the fors won by a wide margin of ap-
proximately 14 to 1 (as agreed by the author, Damian, Nat Tork-
ington, Tim Wilde, and others; for further details see http://teach-
meperl.com/perlcert/OSCON_vote.html).

That outcome was a surprise because previous discussions on
this subject had not shown a strong majority in favor of certifica-

tion. But the fact that those prior exchanges were often dominat-
ed by influential figures arguing against the idea provides a pos-
sible explanation for this discrepancy. Specifically, I suspect that
the less-famous members of our community might have been re-
luctant to go on record in a public forum as expressing disagree-
ment with the more famous ones.

But unlike the environment offered by a newsgroup, a mailing
list, a wiki site, or a spirited discussion in a pub, the OSCON show-
of-hands vote should have provided an environment where indi-
viduals could feel more free to express their views on this con-
troversial topic—after all, their names were not even requested,
let alone stored on the Internet for all to see.

This vote provides the most specific and credible evidence we've
ever had of community opinions on this topic, and it tells us that
JAPHs are clearly in favor of making certification a reality.

Certifications
What exactly is certification? Professionals, in a wide variety of
specialized fields, obtain certification as a way of establishing their
knowledge, whether to satisfy licensing conditions imposed by
regulatory authorities (CPAs, attorneys, doctors, auto mechanics,
and so forth), or as an aid in convincing prospective employers of
their skills.

Many software technologies have serious, standardized certifi-
cation programs including Java, VisualBasic, Visual C++, Oracle,
DB2, and various flavors of UNIX and GNU/Linux.

Historically, Perl programmers have had the opportunity to ac-
quire four types of credentials attesting to their knowledge of
Perl. These credentials vary widely in price, sophistication, cred-
ibility, and value, and they are listed below.

School certificates: In recent years, certain progressive insti-
tutions of higher education have established Perl training programs
that award certificates to their graduates. I’m on the advisory board
for such a program at the University of Washington.

That program covers a fairly comprehensive range of pro-
gramming topics, and awards a pass/fail grade based partly on the
student’s ability to submit acceptable source code. Instructors have
included Perl specialists from Amazon.com and the Slash project,
among others, who are familiar with current Perl programming
practices in both corporate and Open-Source development envi-
ronments.

Because students who earn these types of certificates have not
only learned practical uses of the language but have also demon-
strated an ability to program in it, these are generally considered
the most impressive certificates currently available.

Training vendor certificates: Many training vendors award
“class completion certificates” to students who attend training
classes. Although there was a distant time when it was not un-
usual for final exams to be administered on the last day of such
classes, in recent times, the industry standard has shifted toward

The Perl Journal ■ October 2003 10 www.tpj.com

We’ve done a lousy job of pitching
our language to the business

community

awarding these certificates largely on the basis of attendance (can
you say “self esteem movement”?).

Naturally, such credentials are of rather limited value in them-
selves, but they still signify something valuable. That’s because
the vast majority of students attending such classes actually ap-
ply themselves and learn the material.

Dubious certificates: With a little Googling, one can find a few
vendors that are currently offering Perl certifications, based ex-
clusively on brief on-line tests, at very low prices ($50 or less).

But even if these tests were masterfully designed and initially
validated under controlled conditions by accepted psychometric
procedures, the certificates they’re now awarding would have to
be viewed with circumspection. That’s because these vendors are
testing individuals with unconfirmed identities under unregulated
conditions, which allows:

• Anybody to pose as John Doe to get “him” certified.
• The real John Doe to take the test, while obtaining answers from

somebody else.
• The possibility that a prospective future testee could print the

test, get somebody to tell him the answers, and then later pass
the test—without ever learning anything about Perl! (This as-
sumes the test questions are drawn from a small pool, which is
a safe bet for such cheap programs.)

These uncontrolled testing conditions represent an egregious
violation of psychometric requirements, including “validity,” the
property that the test (as administered) is truly assessing the tes-
tee’s knowledge of the subject, and “reliability,” the property that
a similar grade would be expected on a retest.

Joke certificates: There are well-known members of the Perl
community who are strongly opposed to certification. In fact, in
an exhibition of admirable entrepreneurial spirit, a few of them
started selling fancy and personalized, but totally bogus Perl cer-
tifications years ago. Their admitted motivation is to make it dif-
ficult for any serious attempt at a Perl-certification program to gain
acceptance, by flooding the market with these cheap, fraudulent
certificates, which hiring managers will think are legitimate.

It's understandable that anyone who had been offended by a
laughingly defective certification test would find the cynicism un-
derlying this prank to be amusing. But despite its Pythonesque
appeal, this “disservice” has, thankfully, not caught on.

But I shudder to contemplate the message this is sending about
Perl to the IT community, which is one of disrespecting accepted
corporate hiring practices, and actively plotting to preserve the
current difficulties that HR professionals face in hiring JAPHs.

Serious Perl Certificates
Never in Perl’s history has there been a Perl certification pro-
gram that was widely recognized by employers or endorsed
by community leaders. Far from it. I think we in the Perl com-
munity should change this, by creating a serious certification
program.

Its tests should be:

• Designed by subject matter experts.
• Compliant with established psychometric principles (validity,

reliability, and so on).
• Administered under regulated conditions.
• Controlled by a respected organization.
• Endorsed by community leaders and leading corporations.
• Sensitive to feedback from testees, to facilitate identification

and correction of (inevitable) errors.
• Optional, based on an understanding that one’s experience and

track record should be recognized as alternative ways of estab-
lishing one’s qualifications.

Beneficiaries
The beneficiaries of a serious certification program for Perl pro-
grammers would include:

• Recruiters, HR departments, and hiring managers who need as-
sistance in screening, classifying, and ranking applicants for
Perl jobs.

• Perl programmers, who would have an opportunity to ob-
tain Perl credentials that would be compatible with estab-
lished corporate hiring practices, and who would have help
in identifying the gaps in their knowledge, so they could bet-
ter their skills.

• Booksellers, publishers, authors, training vendors, colleges, and
testing centers, because there would be an increase in demand
for Perl-related educational materials and services. (See http://
teachmeperl.com/perlcert/beneficiaries.html).

• The whole world of Perl, through a formal definition of the es-
sential components of the basic language and the specialty ar-
eas; through the enhanced professionalism of our image that
would more accurately reflect the value of our language to the
enterprise; and through revenues flowing back into the com-
munity, if certification becomes profitable.

Perl Certification as a Rorschach Test
The phrase Perl Certification seems to conjure up a nightmare ver-
sion of a Rorschach Test for some JAPHs, who imagine the worst
possible interpretation of an ambiguous stimulus, and react ac-
cordingly. They picture an obligatory, monolithic, multiple-guess
trivia test that strives to encompass everything Perlish, takes five
hours, and is conspicuously missing correct answers for 100 of
its 500 questions.

What’s worse, it has to be taken at a special test center, in the
next major city. And it must be retaken annually. Oh, and it costs
$500 each time. Not including tax. But no checks or charge cards
are accepted, only U.S. dollars. Small bills only, $20 max. Must
be in mint condition…

A test like this, which is not (altogether) unprecedented in
the industry, would function as more of a “programmer tax”
and “anger management challenge” than a test of Perl knowl-
edge. But, this nightmare scenario aside, I suspect that most of
certification’s detractors wouldn’t really oppose a well-designed,
well-executed, sensible, and fair certification program, espe-
cially if it could help our community, and if they had direct in-
put into its design.

Why Rock Perl’s Boat?
Okay, so Perl has survived all these years, acquired a large fol-
lowing, made some inroads into IT circles, and accomplished all
that without the benefit of a respectable certification program.
Why should we make such a dramatic change as to adopt a cer-
tification program now?

I’ll give you four reasons:

The Perl Journal ■ October 2003 11 www.tpj.com

Establishing Perl skills as
certifiable could cast Perl in a

totally new light

Perl skills are not properly valued. In my capacity as the job-
listings liaison for SPUG (aka Seattle.pm), I notice changes in the
job market for Perl programmers, and it’s obvious that they have
suffered disproportionately during this extended recession.

One disturbing trend is that many IT managers have retained
their Java and C++ programmers in recent years, while laying
off their Perl programmers. Of course, some of this layoff dis-
parity is rightfully due to the “mission critical” nature of the
jobs some Java and C++ programmers are doing, versus the
less glamorous “glue” jobs performed by many Perl program-
mers. (But if those managers only knew how much of the use-
ful output from their Java and C++ programmers was really de-
rived from clandestine Perl usage, they might have more respect
for their JAPHs!)

These JAPH-dumping IT managers are probably the same ones
who practice lunchtime economizing by skipping the previously
routine $3.45 latte, while maintaining the tradition of the Whop-
per or Big Mac. And of course, Perl (and its JAPHs) would be
better off in the entrée category!

I’ve also noticed another aspect of JAPH under-appreciation.
In recent years, many smart and capable members of SPUG, af-
ter being laid off from their Perl jobs, have found it necessary to
earn certifications in Java or C++ in order to gain new employ-
ment.

Wouldn’t it be better for the Perl community if they could se-
cure employment by obtaining certification in Perl instead? With
the arrival of the newly robustified Perl 6 that will make Perl a fa-
vorable alternative to its competitors, and a “business makeover”
to allow Perl’s PR to more accurately reflect its newfound capa-
bilities, I think we could change the workplace into one where
that could happen.

Perl 6 heralds a clarion call for certification. In my optimistic
vision of the future, I see a world where the Perl 6 team members
will all have sufficient job security that they can devote more time
to their back-burner activities, and finish Perl 6. And it will gar-
ner great reviews, and rekindle the interest of IT executives, who
will be encouraged by its obvious superiority to give the new Perl
a chance for more widespread use in the enterprise.

By then, the U.S. economy will have had plenty of time to turn
around, so we might even experience a new Golden Era (or more
likely a Bronze Era, but that’s good enough) of high-tech corpo-
rate hiring. You know, sort of like 1998–2000, but without the un-
sustainable and unhealthy exponential components.

And guess what the first question will be that recruiters, HR
executives, and hiring managers will be asking applicants for the
scores of newly allocated Perl 6 development positions? I’ll tell
you: “Before we go any further, exactly how much do you know
about Perl 6?”

The advent of Perl 6, with its greater rigor, robustness, and
“conventionality” in certain critical areas could be our golden
(okay, bronze) opportunity to win market share from other lan-
guages. But how easily that will be accomplished will depend on
how easy we make it for corporations to come up with confident
assessments of our Perl 6 skills, to hire us, and then to be dazzled
by the wonders we can achieve with it.

But to make the most of the opportunity provided by Perl 6,
we should have a mature and respected certification program al-
ready in place when it arrives.

Otherwise, no matter how interested IT managers might be in
giving Perl 6 a chance, there will still be significant corporate ob-
stacles blocking its widespread acceptance—such as HR depart-
ments that don’t know what to do with résumés from JAPHs ex-
cept to file them in the wastebasket.

The boat is already rocking. The pertinent question is not
“Why rock Perl’s boat,” because in fact it’s already rocking. The
more appropriate question is “How do we keep it from capsiz-
ing?” We’re losing market share to other languages, such as Ruby,

Python, and PHP, whose main contribution is providing more pro-
saic and conventional ways to get at Perl-like capabilities.

I’ve even heard of IT departments hiring nonprogrammers and
teaching them to write CGI programs in PHP rather than hiring
experienced JAPHs to do those same jobs with Perl, because they

don’t feel comfortable with Perl’s unrivaled peculiarities, com-
plexities, and freedom for individual expression. We need to work
on reversing such trends in the marketplace, and soon.

Certification is worth a try. I know of no case where the in-
troduction of a serious and well-managed certification program
for a software technology has ever resulted in changes that were
largely detrimental to the associated community. Sure, there tends
to be some initial grumbling about the testing fees by those who
choose to seek certification, but if it helps them obtain and keep
employment, and improves the image of their technology, and in-
creases the value attached to their skills, that’s all beneficial.

We know we have problems competing for enterprise pro-
gramming jobs now, and that the advent of Perl 6 will create new
demands for certification. Sitting on our laurels surely won’t help
us face these challenges, but developing a certification program
seems likely to help. There are risks involved (I’ll get to these in
a moment), but I think the odds are in our favor—in large part,
because we, in the Perl community, as the developers of the pro-
gram, would be in charge!

That means we’d have the freedom to devise any kind of un-
conventional certification regimen we might fancy—so long as its
results are reducible to a few words on a résumé, for the conve-
nience of HR departments. For instance, in keeping with the TM-
TOWTDI principle, credit could be given for knowing any cor-
rect solution to a programming problem, rather than a particular
one, so those who know different dialects of Perl could all obtain
certification.

And the “HR-friendly” words associated with testing might in-
clude “Perl Certification, Level 1: Passed with Distinction,” as well
as “Acknowledged Perl Guru” (for those granted testing waivers, on
the basis of their code portfolios)––if that’s what we want.

The Downside
I’ve outlined my views about how a serious Perl certification pro-
gram developed by our community could benefit us. But as any
maintenance programmer can tell you, the introduction of any new
element into a complex system raises the probability that things
will go awry.

My perspective on these concerns is simply this: If we take on
the responsibility for this task as a community, we’ll be in charge.
So if we see things going awry, we can take corrective action. If
we do this well, individual JAPHs with good ideas will have a
much better chance of effecting changes in Perl certification than
they would have with other programs, run by large corporations,
that are looking out for their own vested interests.

Certification only needs to yield a net gain to be a success.
There will undoubtedly be some undesirable repercussions of

The Perl Journal ■ October 2003 12 www.tpj.com

Perl 6 could be our golden
opportunity to win market share

from other languages

introducing such a program so late in the evolution of Perl and
its community. But if the results are largely beneficial, espe-
cially in the critical employment arena, we’d be foolish not to
seize the opportunity to make the world a better place for
JAPHs.

And we must not overlook the fact that there are also risks as-
sociated with inactivity. Specifically, if we don’t start developing
our own serious program for Perl certification, and soon, some-
body else might do it for us—or perhaps the more appropriate
phrasing would be to us.

Policy Precedes Implementation
Although I’ve written and spoken elsewhere about my own ideas
for implementing an optional, state-of-the-art multilevel certifi-
cation program for Perl, and several others have also offered cre-
ative ideas, I’ve purposely avoided matters of implementation here.

That’s because the unavoidable nitpicking involved in design
and implementation must not be allowed to get in the way of ra-
tional decision making, and we have a very important decision to
make at this juncture.

Given that a majority of community members expressed a de-
sire at OSCON for Perl to have a certification program, the ques-
tion we must now collectively answer is: “How should we respond
to the demand for Perl Certification?”

If we decide to “make it so,” then we should proceed to col-
lectively determine what the properties of that program should be
and work on creating it. But there is one formidable obstacle that
we’ll have to overcome.

The Biggest Obstacle: Us!
We in the Perl community are both our greatest asset and our
greatest liability (but life’s like that!). If an upstart language as
great as Perl had been created by a corporation (think Java, but
with more inspiration), the business-friendly infrastructure would
have been incorporated from the start, just as surely as The Lar-
ry felt the need to provide a2p and s2p with the first release of
Perl. So that hypothetical language would have had an effec-
tive PR program and a certification process long ago, and the
advantages that accrue from them. (By the way, a2p and s2p
are, respectively, awk-to-Perl and sed-to-Perl translators. Lar-
ry provided these to automate conversion of programs written
for those UNIX utilities into Perl programs, with Perl’s initial
release. What a guy!)

However, along with having greater intelligence, creativity, gen-
erosity, sociability, and tribal spirit than your average geek, JAPHs
also exhibit greater independence and nonconformance. And that
(sometimes unfortunately) includes a tendency to flout the estab-
lished conventions of the corporate world.

But this is to be expected—it’s no accident, after all, that we’ve
been brought together under the banner of TMTOWTDI. Nor is
it an accident that most of the greatest accomplishments in Perl
culture (CPAN, CPANPLUS, DBI, PAR, perltidy, the Perl 6 de-
sign, the Parrot interpreter, TPJ, the Camel book, the Perl Cook-
book, Damian’s OO Perl book, TPF development grants, Perl
Mongers, Perlmonks, and YAPC) have been achieved either by
individuals working alone, or in very small groups of like-mind-
ed colleagues.

In recognition of this, it would seem that our best chance for
success would be to have a small group of people, who show ev-
idence of being able to agree on certain core principles, oversee
this project.

But we’ll have to avoid getting dispirited by those who will
warn us of “insurmountable problems” and a “pestilence on all of
Perlity” if we dare to establish such a program. Although this kind
of input can sometimes freeze people into inaction, we need to
remember two things: 1) Many groups have already done what
we’d be doing (for example, the Linux community), and 2) We

have an unmatched pool of talent, ingenuity, and perspicacity in
our community to apply to the effort.

So there should be absolutely no doubt about our ability to
make this happen, and make a success of it, if we should choose
to take on this task.

Conclusion
Why should we create a certification program?

• HR departments want JAPHs to be certified to facilitate pre-
liminary screening of job applicants.

• Managers want JAPHs to be certified to make their individual
skills easier to compare.

• Catering to accepted hiring practices should promote greater
hiring of JAPHs and greater acceptance of Perl in the enterprise.

• The advent of Perl 6 should cause renewed interest in Perl, more
Perl positions in mission-critical application areas, and there-
fore, a heightened demand for applicants certified as having the
latest Perl skills.

• Invalid “certification programs” that tarnish Perl’s image should
rightly have to compete with a serious one created by those who
really know the language and have its best interests at heart—
the Perl community.

• Vendors are already providing this service with various degrees
of sincerity and sophistication. If we don’t rise to the challenge
to do it properly, some opportunistic corporation might beat us
to the punch, and wrest control of this important aspect of our
culture from us.

It’s Time for Perl Certification
My recommendation is that we immediately start working on
a certification program for the essential skills of Perl 5. Once
that proven testing infrastructure is in place and accepted by
the corporate world, we can start creating new tests for Perl 6,
while continuing to develop add-on certifications for Perl 5
(which should remain an important language through the rest
of the decade).

How to Get Involved
It would seem most natural to develop a community-based Perl
certification program under the auspices of a community-wide or-
ganization. Although The Perl Foundation is the only one we have
that comes close to being appropriate, and its leader is interested
in this issue, she has thus far declined to take an active role in it.

But if we’re to make any headway on this challenge, somebody
will have to act as a coordinator—so I volunteer.

As a first step, I encourage those interested in helping to de-
velop a Perl certification program to subscribe to the Perl Cer-
tification Mailing List, at http://perlocity.org/cgi-bin/mailman/
listinfo/perlcert. Then post a message announcing any special
qualifications you might have (such as experience in academic
testing or corporate hiring) and indicating what roles you might
be willing to play in this effort (test designer, fund-raiser, busi-
ness liaison, hosting provider, and so forth).

We’ll take it from there—as a community!

Acknowledgment
The author is indebted to the following reviewers for helpful com-
ments on earlier versions of this article: Damian Conway, Terry
Nightingale, Rodney Doe, Nancy Corbett, Christie Robertson, and
John Michael Mars.

TPJ

The Perl Journal ■ October 2003 13 www.tpj.com

